RP2040 A microcontroller by Raspberry Pi

RP2040 Datasheet
A microcontroller
by Raspberry P1

__|
Raspberry Pi Ltd

RP2040 Datasheet

Colophon

Copyright © 2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

Portions Copyright © 2019 Synopsys, Inc.

All rights reserved. Used with permission. Synopsys & DesignWare are registered trademarks of Synopsys, Inc.
Portions Copyright © 2000-2001, 2005, 2007, 2009, 2011-2012, 2016 ARM Limited.

All rights reserved. Used with permission.

build-date: 2023-03-02
build-version: ae3b121-clean

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be
found in the Raspberry Pi Pico C/C++ SDK book. Source code included in the documentation is
Copyright © 2020-2022 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-
Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (“RESOURCES") ARE PROVIDED BY RASPBERRY PI LTD (“RPL") "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO
EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPL's Standard Terms. RPL’s provision of the RESOURCES does not

Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/

RP2040 Datasheet
]

expand or otherwise modify RPL's Standard Terms including but not limited to the disclaimers and warranties
expressed in them.

]
Legal disclaimer notice 2

https://www.raspberrypi.com/terms-conditions-sale/

RP2040 Datasheet

Table of contents

Colophon - oo 1
Legal disclaimer notice 1
ToIntroducCtion. « .. 9
1.1. Why is the chip called RP20407. 9
T.2.SUMMANY .« oo 10
1.3, The Chip . ..o 10
T4, Pinout Reference. oo 11
T4 PinLocationso 11
T.4.2. Pin Descriptions 12
T.4.3.GPIO FUNCLIONS 13
2.System DesCription oo 15
2.0 Bus Fabric .. 15
217 AHB-Lite Crossbar 16
2.1.2. Atomic Register ACCESSo 18
213 APB Bridge . . . 18
2.1.4. Narrow 10 Register Writes. i 18
2.1.5. Listof Registers 19
2.2, Address Map 24
2271 SUMMANY. oo 24
2.2.2.Detail .o 25
2.3. Processor subsystem 27
230, SI0 27
2.3.2.INTeITUPTS. « . i 60
2.3.3.BEvent Signals 61
2.3.4.DEbUQG - . 61
2.4.Cortex-MO+ .. 63
2470 Featureso 63
2.4.2. Functional Description 64
2.4.3. Programmer's model. 69
2.4.4.System CONTIOl.o 74
245 NVIC. | 75
2.4.6. MPU . 76
24.7.DEbUQ . 77
2.4.8. Listof Registers. 77
2.5, DM A 91
2.5.1. Configuring Channels 92
2.5.2. Starting Channels. 94
2.5.3. Data Request (DREQ). 95
2.5 4 INTeITUPTES. © . oo 97
2.5.5. Additional Features 97
2.5.6. Example Use Cases. 98
2.5.7. Listof Registers. 102
2.6. MEIMOTY . .o 121
2.6.T. ROM. 121
2.6.2. SRAM 122
2.6.3. Flash ..o 123
2.7.B00tSEqQUENCE i 130
2.8. BOOMrOM oo 130
2.8.1. Processor Controlled Boot Sequence 131
2.8.2. Launching Code On Processor Core T i 133
2.8.3. Bootrom Contents 134
2.8.4.USB Mass Storage Interface 146
2.8.5.USB PICOBOOT Interface 147
2.9. Power Supplies . . . oo 153
2.9.1. Digital 10 Supply (IOVDD) 154

Table of contents

RP2040 Datasheet

Table of contents

2.9.2. Digital Core Supply (DVDD). 154
2.9.3. On-Chip Voltage Regulator Input Supply (VREG_VIN) 154
2.9.4.USB PHY Supply (USB_VDD) 154
2.9.5. ADC Supply (ADC_AVDD) 155
2.9.6. Power Supply SeQUENCING 155
2.9.7. Power Supply Schemes 155
2.10. Core Supply Regulator 158
2.10.7. Application Circuit. 158
2.10.2. Operating Modes 159
2.10.3. Output Voltage Select. 160
2.710.4.Status - - .. 160
2.10.5. Current Limit . oo 160
2.10.6. Listof Registers. 160
2.10.7. Detailed Specifications 163
217, Power Control 163
2.11.7. Top-level Clock Gates 163
2.11.2.SLEEP State 164
211.3. DORMANT State 164
2.171.4. Memory Power DOWNo 164
2.11.5. Programmer's Model 165
2.12.Chip-Level Reset 166
2020 0VEIVIEW . - oo 166
2.12.2. Power-on Reset 167
2.12.3. Brown-out Detection 168
2.12.4.Supply Monitor. ... 170
2.12.5.External Reset 170
2.12.6. Rescue Debug Port Reset. 170
2.12.7.Source of Last Reset. 170
2.12.8. Listof Registers. 171
2.13. Power-On State Machine 171
2030 0OVEIVIEW . - . 171
2.13.2. Power ON SEqUENCE i 171
2.13.3. Register Control. 172
2.13.4. Interaction with Watchdog 172
2.13.5. Listof Registers. 172
2.14.Subsystem Resets 175
20470, 0VEIVIEW . ..o 175
2.14.2. Programmer’'s Model e 176
2.14.3. Listof Registers. 178
215, CloCKS 181
2050, OVEIVIEW . - . 181
2.15.2. Clock sSOUrCeS 182
2.15.3. Clock Generators. 185
2.15.4. Frequency COUNter 188
2.18.5. RESUS oo 189
2.15.6. Programmer's Model 189
2.15.7. Listof Registers. 196
2.16. Crystal Oscillator (XOSC). 217
2061, OVEIVIEW . .. oo 217
2.16.2.USAQE . - - 217
2.16.3.Startup Delay 218
2.16.4. XOSC COUNTEr - . . .o 218
2.16.5. DORMANT mMOde 218
2.16.6. Programmer's Model 219
2.16.7. Listof Registers. o 220
2.17.Ring Oscillator (ROSC) 222
20770 0VEIVIEW . .o 222
2.17.2. ROSC/XOSC trade-offs 222
2.17.3. Modifying the frequency 223
217.4.ROSCAivider 223

RP2040 Datasheet

2.17.5. Random Number Generator. 223
2.17.6. ROSC Countero 223
217.7.DORMANT MOde 224
2.17.8. Listof Registers. 224

2. 08, PLL . 228
208 1. 0VEIVIEW . . o 228
2.18.2. Calculating PLL parameters. 229
2.18.3.Configuration 232
2.18.4. Listof Registers. 234
209, GPIO . 235
2197 OVEIVIEW . - . 235
2.19.2. Function Select 236
2,193, Interrupts . 238
2.09.4.Pads . 239
2.19.5. Software Examples 240
2.19.6. Listof Registers. 243
2.20. SySiNfO 303
2.20.T. OVEIVIEW . . .o 303
2.20.2. Listof Registers. 303
2,20, SyYSCig 304
2210 0VEIVIEW . . o 304
2.21.2. Listof Registers. 304
2.22. TBMAN . | 307
2.22.71. Listof Registers. 307

3L P O 309
3T OVeIVIEW i 309
3.2. Programmer’'s Model 310
321 PIO Programs. . ..o o 310
3.2.2.Control Flow . . . 311
3.2.3 RegiSterso 312
324 Stalling - .. 315
3.2.5. PINMappingo 316
3.2.6. IRQFIAgS. - .. 316
3.2.7. Interactions Between State Machines 316
3.3. PIO Assembler (Pioasm) 317
3.3.1. Directives . o 317
3.B.2.Values . i 318
3.3 3L EXPressiONS . .o 318
3.3.4. ComMENTS . oo 318
335 Labels i 318
3.3.6. INSTrUCtiONS. 319
3.3.7. Pseudoinstructions 319
3.4 Instruction Set. 319
A SUMMANY. © oo 319
34 2. M 320
A 3 WAIT 321
A A IN 322
3.4, OUT 323
34,6, PUSH . 324
A7 PULL 325
348 MOV . 326
340 IRQ . oo 327
3400, SET 328
3.5.Functional Details 329
3.5.0. Side-Set . . . 329
3.5.2. Program Wrapping 330
353 FIFO JOINING - - ..o 332
3.5.4. Autopush and Autopull . .. 333
3.5.5. Clock Dividers 337
3.5.6. GPIO MapPINg - oo 338

Table of contents

RP2040 Datasheet
]

3.5.7. Forced and EXEC'd InStructions. 340
3.6, EXamples . oo 342
3.6.1. DUplex SPI - 342
3.6.2. WS28T2 LEDS. . . . 346
3.6.3. UART TX o 348
3.6.4. UART RX oo 350
3.6.5. Manchester Serial TX and RX. 353
3.6.6. Differential Manchester (BMC) TX and RX 355
36,7, 120 358
3.6.8. PWIM L 362
3.6.9. Addition. . . . 364
3.6.10. Further Examples. 366
3.7.Listof Registers 366
4. Peripherals 382
A USB . 382
AT T 0VeIVIEW L o i 382
4.7.2. Architecture « ... 383
4.1.3. Programmer's Model. 393
414 Listof Registers. 397
References il 416

A 2. UART 416
A.2.7.0VEIVIEW . . 417
4.2.2. Functional description. 417
4.2.3.0peration 419
4.2.4. UART hardware flow control 422
4.2.5.UART DMA Interface 423
4.2.6. INTerrUPtS . . 424
4.2.7. Programmer's Model. 426
4.2.8. Listof Registers. 428

A 312G, 440
A4.3.1.Features 441
4.3.2.1P Configuration. 441
4.3.3.12C OVerVIEW. . . .o 442
4.3.4.12CTerminology. - 444
4.3.5.12C Behaviour. 444
4.3.6.12C Protocols 446
4.3.7. Tx FIFO Management and START, STOP and RESTART Generation. 449
4.3.8. Multiple Master Arbitration. 451
4.3.9. Clock Synchronization. 452
4.3.10. Operation Modes 453
4.3.17. Spike SUPPressioN. 458
4.3.12. Fast Mode Plus Operation 459
4.3.13.Bus Clear Feature 459
4.3.14. 1C_CLK Frequency Configuration. 460
4.3.15. DMA Controller Interface 464
4.3.16. Operation of Interrupt Registers 465
4.3.17. Listof RegiSters. 465

A A, Sl 503
AAT.0VEIVIEW . .o 504
4.4.2. Functional Description 505
4.4.3.0peration 507
444 Listof Registers. 517
A5 PWM . 524
A5.T.0VeIVIEW - . o 524
4.5.2. Programmer's Model. 524
4.53. Listof Registers. 531
4.6, TIMEE o 536
A4.6.7. OVEIVIEW . . . 536
4.6.2. COUNTEr . . .o 537
4.6.3. AlarmS. . 537

Table of contents 6

RP2040 Datasheet
]

4.6.4. Programmer's Model. 538
4.6.5. List of Registers. 541
A7 . Watchdog. - 546
A7.0.0VEIVIEW . . o 546
4.7.2. Tick generation 546
4.7.3. Watchdog Counter. 546
4.7.4.Scratch Registers. 547
4.7.5. Programmer's Model. 547
4.7.6.Listof Registers. 548
4.8 RTC . il 550
4.8.1.Storage Format 550
A.8.2.Leapyear ... 551
4.8.3. INterrupts -l 551
4.8.4. Reference CloCK o 551
4.8.5. Programmer's Model. 552
4.8.6. Listof Registers. 555
4.9. ADC and Temperature SENSOT. 559
4.9.1. ADC controller 560
4.9.2.SARADC . . . 561
4.9.3. ADCENOB 563
4.9.4. INLand DNL 564
4.9.5. Temperature SENSOT 565
4.9.6. Listof Registers. 566
400, SSl i 569
A70.T. OVEIVIEW . - - 569
4.10.2. Features « .. i 570
4.10.3. IP Modifications. 571
4.10.4. Clock Ratios 572
4.10.5. Transmit and Receive FIFO Buffers. 573
4.10.6. 32-Bit Frame Size Support 574
4.10.7. SSHINTEITUPESo 574
4.10.8. Transfer Modes 575
4.10.9. Operation Modes 576
4.10.10. Partner Connection Interfaces. 581
4.10.11. DMA Controller Interface 597
4.10.12. APB Interface. 599
41073, Listof Registers. 600

5. Electrical and Mechanical 609
5.0 Package . . 609
5.1.1. Thermal characteristics 610
5.1.2. Recommended PCB Footprint 610
5.1.3. Package markings 610
5.2.Storage conditions 611
5.3.Solder profile. 611
5.4.Compliance 613
5.8 PINOUL . il 613
5.5.1.PinLocations 613
5.5.2. Pin Definitions 614
5.5.3. Pin Specifications 616
5.6. Power SUPPlies 620
5.7.Power ConsumMPpPtion.o 621
5.7.1. Peripheral power consumption 621
5.7.2. Power consumption for typical usercases 621
Appendix A: Register Field Types. 624
Standard typeso 624
R 624
RO . 624
WO 624
Clear types - . 624
S i 624

Table of contents 7

RP2040 Datasheet

W C 624
FIFO Ay pes . i 624
RE 624
W 624
RWE oo 625
Appendix B: Errata 626
BOOtr oM. i 626
RP2040-E. . . oo 626
RP2040-ET4 oo 626
CloCKS o 627
RP2040-E7. . 627
RP2040-ET0 . oo 627
DM A 628
RP2040-ET12 628
RP2040-E13 oo 628
GPIO/ ADC . i 629
RP2040-E6. 629
RP2040-ETT oo 629
USB oo 629
RP2040-E2. . . 629
RP2040-E3. . . 630
RP2040-E4. oo 630
RP2040-E5. . 630
RP2040-E15 . 632
Watchdog - ... 633
RP2040-ET. . oo 633
XIP Flash . o 633
RP2040-E8. . . oo 633
Appendix C: Availability 634
SUPPOIt o 634
Ordering COde 634
Appendix D: Documentation release history. 635

]
Table of contents 8

RP2040 Datasheet

Chapter 1. Introduction

Microcontrollers connect the world of software to the world of hardware. They allow developers to write software which
interacts with the physical world in the same deterministic, cycle-accurate manner as digital logic. They occupy the
bottom left corner of the price/performance space, outselling their more powerful brethren by a factor of ten to one.
They are the workhorses that power the digital transformation of our world.

RP2040 is the debut microcontroller from Raspberry Pi. It brings our signature values of high performance, low cost,
and ease of use to the microcontroller space.

With a large on-chip memory, symmetric dual-core processor complex, deterministic bus fabric, and rich peripheral set
augmented with our unique Programmable 1/0 (PIO) subsystem, it provides professional users with unrivalled power
and flexibility. With detailed documentation, a polished MicroPython port, and a UF2 bootloader in ROM, it has the
lowest possible barrier to entry for beginner and hobbyist users.

RP2040 is a stateless device, with support for cached execute-in-place from external QSPI memory. This design
decision allows you to choose the appropriate density of non-volatile storage for your application, and to benefit from
the low pricing of commodity Flash parts.

RP2040 is manufactured on a modern 40nm process node, delivering high performance, low dynamic power
consumption, and low leakage, with a variety of low-power modes to support extended-duration operation on battery
power.

Key features:

® Dual ARM Cortex-M0+ @ 133MHz

264kB on-chip SRAM in six independent banks

Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus

DMA controller

Fully-connected AHB crossbar

Interpolator and integer divider peripherals

On-chip programmable LDO to generate core voltage

2 on-chip PLLs to generate USB and core clocks

® 30 GPIO pins, 4 of which can be used as analogue inputs

Peripherals
o 2UARTs
o 2 SPI controllers
o 212C controllers
o 16 PWM channels
o USB 1.1 controller and PHY, with host and device support
o 8 PIO state machines

Whatever your microcontroller application, from machine learning to motor control, from agriculture to audio, RP2040
has the performance, feature set, and support to make your product fly.

1.1. Why is the chip called RP2040?

The post-fix numeral on RP2040 comes from the following,

1.1. Why is the chip called RP2040? 9

RP2040 Datasheet
]

1. Number of processor cores (2)

2. Loosely which type of processor (M0+)

3. floor(log2(ram / 16k))

4. floor(log2(nonvolatile / 16k)) or 0 if no onboard nonvolatile storage

see Figure 1.

Figure 1. An
explanation for the

name of the RP2040 D
chip.
—
A

A

T

floor(log2(nonvolatile / 16k))

40
|

floor(log2(ram / 16k))

— 1O

Type of core (e.g. MO+)

Number of cores

Raspberry Pi

1.2. Summary

RP2040 is a low-cost, high-performance microcontroller device with flexible digital interfaces. Key features:
® Dual Cortex M0+ processor cores, up to 133MHz
® 264kB of embedded SRAM in 6 banks
® 30 multifunction GPIO
® 6 dedicated IO for SPI Flash (supporting XIP)
® Dedicated hardware for commonly used peripherals
® Programmable 10 for extended peripheral support
® 4 channel ADC with internal temperature sensor, 500ksps, 12-bit conversion

® USB 1.1 Host/Device

1.3. The Chip

RP2040 has a dual MO+ processor cores, DMA, internal memory and peripheral blocks connected via AHB/APB bus
fabric.

|
1.2. Summary 10

RP2040 Datasheet

Figure 2. A system
overview of the
RP2040 chip

10s Clock RP2040
) Internal
generation)
oscillator
P > Crvetal PLL Interrupts
rysta
< > Y PLL
ProcO Proc1
<o e I
SIO DMA
' [
Peripherals
I SPI x2 | | Reset control |
— Bus Fabric
PWM Power on state
UART x2 machine
GPIO -
L N—{
< > [200] —1 I Timer | | Sysctrl | I I ! | ! !
| RIC | | sysinfo | Y
I 120 x2 | | Watchdog | PIO0|PIO1 Cache ROM| [SRAM SRAM| | |USB —>
ADC & TS [PIg SRAM (| HSRAM
I SRAMHYHSRAM
I —
Memory
< » QSPI
Core Supply Regulator =3

Code may be executed directly from external memory through a dedicated SPI, DSPI or QSPI interface. A small cache
improves performance for typical applications.

Debug is available via the SWD interface.

Internal SRAM can contain code or data. It is addressed as a single 264 kB region, but physically partitioned into 6
banks to allow simultaneous parallel access from different masters.

DMA bus masters are available to offload repetitive data transfer tasks from the processors.

GPIO pins can be driven directly, or from a variety of dedicated logic functions.

Dedicated hardware for fixed functions such as SPI, 12C, UART.

Flexible configurable PIO controllers can be used to provide a wide variety of |0 functions.

A USB controller with embedded PHY can be used to provide FS/LS Host or Device connectivity under software control.
Four ADC inputs which are shared with GPIO pins.

Two PLLs to provide a fixed 48MHz clock for USB or ADC, and a flexible system clock up to 133MHz.

An internal Voltage Regulator to supply the core voltage so the end product only needs supply the 10 voltage.

1.4. Pinout Reference

This section provides a quick reference for pinout and pin functions. Full details, including electrical specifications and
package drawings, can be found in Chapter 5.

1.4.1. Pin Locations

1.4. Pinout Reference 1

RP2040 Datasheet

Figure 3. RP2040

Pinout for QFN-56
7x7mm (reduced ePad
size) =
Zl - oS o a 3lzl8
21212121212 ala|Z|5]5(>
AL A A4 A all>alall - <|
=== = =] ella 1 || oo
alajafalafo|]a S|/ [S]
DDA |A|AD| N[>) 0l lnle|lel a
olo|e|oo|e|al=|23|2(3|=]|=]<<
56|55|54|53(52|51|50|49(48(47|46|45(44(43
10VDD | 1 O 42| I0VDD
GPIOO | 2 41| GP1029/ADC3
GPIO1 | 3 40(GP1028/ADC2
GPIO2 | 4 39(GP1027/ADC1
GPIO3 | 5 38| GP1026/ADCO
GPIO4 | 6 37| GP1025
GPIOS | 7 36| GP1024
GND
GPIO6 | 8 35| GP1023
GPIO7 | 9 34| GP1022
IovDD (10 33| IoVvDD
GPI08 (11 32| GPI021
GPIO9 (12 31| GP1020
GPIO10 |13 TOP VIEW. 30| GPI0O19
GPIO11 |14 29| GPIO18
15(16(17|18|19(20(21|22|23|24(25|26|27 |28

dieisivizl=z|Elala|x]o=] o/~
ARERRAHEEBERREEEIEE
oalala|f x|e|a|z|3 oo
o oo o|E 2 oo

1.4.2. Pin Descriptions

Table 1. The function
of each pin is briefly

dfsc’fbef here. Full | Gp1OX General-purpose digital input and output. RP2040 can connect one of a number of internal
electrica

specifications can be peripherals to each GPIO, or control GPIOs directly from software.
found in Chapter 5.

Name Description

GPIOx/ADCy General-purpose digital input and output, with analogue-to-digital converter function. The RP2040
ADC has an analogue multiplexer which can select any one of these pins, and sample the voltage.

QSPIx Interface to a SPI, Dual-SPI or Quad-SPI flash device, with execute-in-place support. These pins can
also be used as software-controlled GPIOs, if they are not required for flash access.

USB_DM and USB controller, supporting Full Speed device and Full/Low Speed host. A 27Q series termination
USB_DP resistor is required on each pin, but bus pullups and pulldowns are provided internally.

XIN and XOUT Connect a crystal to RP2040’s crystal oscillator. XIN can also be used as a single-ended CMOS
clock input, with XOUT disconnected. The USB bootloader requires a 12MHz crystal or 12MHz
clock input.

RUN Global asynchronous reset pin. Reset when driven low, run when driven high. If no external reset is
required, this pin can be tied directly to I0VDD.

SWCLK and Access to the internal Serial Wire Debug multi-drop bus. Provides debug access to both

SWDIO processors, and can be used to download code.

TESTEN Factory test mode pin. Tie to GND.

GND Single external ground connection, bonded to a number of internal ground pads on the RP2040 die.
I0VDD Power supply for digital GPIOs, nominal voltage 1.8V to 3.3V

1.4. Pinout Reference 12

RP2040 Datasheet
]

Table 2. General
Purpose Input/Output
(GPIO) Bank 0
Functions

Name Description

USB_VDD Power supply for internal USB Full Speed PHY, nominal voltage 3.3V

ADC_AVDD Power supply for analogue-to-digital converter, nominal voltage 3.3V

VREG_VIN Power input for the internal core voltage regulator, nominal voltage 1.8V to 3.3V

VREG_VOUT Power output for the internal core voltage regulator, nominal voltage 1.1V, T00mA max current

DVDD Digital core power supply, nominal voltage 1.1V. Can be connected to VREG_VOUT, or to some
other board-level power supply.

1.4.3. GPIO Functions

Each individual GPIO pin can be connected to an internal peripheral via the GPIO functions defined below. Some internal
peripheral connections appear in multiple places to allow some system level flexibility. SIO, PIO0 and PIO1 can connect
to all GPIO pins and are controlled by software (or software controlled state machines) so can be used to implement
many functions.

Function
GPIO |F1 F2 F3 F4 F5 |F6 F7 F8 F9
0 SPI0 RX UARTO TX 12CO SDA |[PWMOA |SIO |PIOO |PIO1 USB OVCUR DET
1 SPI0O CSn | UARTO RX 12COSCL |PWMOB |SIO [PIOO |[PIO1 USB VBUS DET
2 SPI0O SCK | UARTOCTS |[I2C1SDA |PWM1A |SIO |PIOO |PIO1 USB VBUS EN
3 SPI0O TX UARTORTS [I2C1SCL |PWM1B |[SIO |PIOO |PIO1 USB OVCUR DET
4 SPI0 RX UART1 TX 12CO SDA |PWM2A |SIO |PIOO |PIO1 USB VBUS DET
5 SPI0O CSn | UART1 RX 12C0SCL |PWM2B |SIO [PIOO |PIO1 USB VBUS EN
6 SPI0O SCK | UART1CTS |[I2C1SDA |PWM3 A |SIO |PIOO |PIO1 USB OVCUR DET
7 SPIO TX UART1RTS |[I2C1SCL |PWM3B |[SIO |PIOO |PIO1 USB VBUS DET
8 SPIT RX UART1 TX 12CO SDA |PWM4 A |SIO |PIO0 |PIO1 USB VBUS EN
9 SPIT CSn | UART1 RX 12CO0SCL |PWM4B |SIO [PIOO |PIO1 USB OVCUR DET
10 SPI1 SCK | UART1 CTS |I2C1 SDA |PWM5SA ([SIO |PIOO |PIO1 USB VBUS DET
11 SPIT TX UART1RTS |[I2C1SCL |PWM5B |[SIO |PIOO |PIO1 USB VBUS EN
12 SPIT RX UARTO TX 12CO SDA |PWM6 A |SIO |PIO0 |PIO1 USB OVCUR DET
13 SPIT CSn | UARTO RX 12C0SCL |PWM6B |SIO [PIOO |PIO1 USB VBUS DET
14 SPI1 SCK | UARTO CTS |12C1 SDA |PWM7 A [SIO |PIOO |PIO1 USB VBUS EN
15 SPIT TX UARTORTS [I2C1SCL |PWM7B |[SIO |PIOO |PIO1 USB OVCUR DET
16 SPI0 RX UARTO TX 12CO SDA |PWMOA |SIO |PIOO |PIO1 USB VBUS DET
17 SPI0O CSn | UARTO RX 12C0SCL |PWMOB |SIO [PIOO |[PIO1 USB VBUS EN
18 SPI0O SCK | UARTO CTS |12C1 SDA |PWM1A |[SIO |PIOO |PIO1 USB OVCUR DET
19 SPI0O TX UARTORTS [I2C1SCL |PWM1B |[SIO |PIOO |PIO1 USB VBUS DET
20 SPIO RX UART1 TX 12CO SDA |PWM2A |[SIO |[PIO0 |PIOT |CLOCK GPINO USB VBUS EN
21 SPI0O CSn | UART1 RX 12C0SCL |PWM2B |[SIO |[PIO0 |PIOT |CLOCKGPOUTO |USBOVCURDET

1.4. Pinout Reference 13

RP2040 Datasheet

Function
22 SPI0O SCK |UART1CTS |[12C1SDA |PWM3 A |SIO |PIOO |PIOT |CLOCK GPIN1 USB VBUS DET
23 SPIO TX UART1RTS [I2C1SCL |PWM3B |SIO |PIOO |PIOT |CLOCKGPOUT1 |USB VBUSEN
24 SPIT RX UART1 TX I2CO SDA |PWM4 A |SIO |PIOO |PIOT |CLOCKGPOUT2 |USBOVCURDET
25 SPIT CSn | UART1 RX [2CO0SCL |PWM4B |SIO |PIOO |PIOT |CLOCKGPOUT3 |USB VBUSDET
26 SPIT SCK |UART1CTS |[I2C1SDA |PWM5A |SIO |PIOO |PIO1 USB VBUS EN
27 SPIT TX UART1RTS |[I2C1SCL |PWM5B |[SIO |PIOO |PIO1 USB OVCUR DET
28 SPIT RX UARTO TX I2CO SDA |PWM6 A |SIO |PIOO |PIO1 USB VBUS DET
29 SPIT CSn | UARTO RX [2COSCL |PWM6B |[SIO |PIOO |PIO1 USB VBUS EN
Table 3. GPIO bank 0 Function Name Description

function descriptions

SPIx Connect one of the internal PL022 SPI peripherals to GPIO

UARTX Connect one of the internal PL011 UART peripherals to GPIO

12Cx Connect one of the internal DW 12C peripherals to GPIO

PWMx A/B Connect a PWM slice to GPIO. There are eight PWM slices, each with two output
channels (A/B). The B pin can also be used as an input, for frequency and duty cycle
measurement.

[e] Software control of GPIO, from the single-cycle 10 (SIO) block. The SIO function (F5)
must be selected for the processors to drive a GPIO, but the input is always connected,
so software can check the state of GPIOs at any time.

PIOx Connect one of the programmable 10 blocks (PI0) to GPIO. PIO can implement a wide
variety of interfaces, and has its own internal pin mapping hardware, allowing flexible
placement of digital interfaces on bank 0 GPIOs. The PIO function (F6, F7) must be
selected for PIO to drive a GPIO, but the input is always connected, so the PIOs can
always see the state of all pins.

CLOCK GPINx General purpose clock inputs. Can be routed to a number of internal clock domains on
RP2040, e.g. to provide a THz clock for the RTC, or can be connected to an internal
frequency counter.

CLOCK GPOUTx General purpose clock outputs. Can drive a number of internal clocks (including PLL
outputs) onto GPIOs, with optional integer divide.

USB OVCUR DET/VBUS USB power control signals to/from the internal USB controller

DET/VBUS EN

1.4. Pinout Reference

14

RP2040 Datasheet

Chapter 2. System Description

This chapter describes the RP2040 key system features including processor, memory, how blocks are connected,
clocks, resets, power, and 10. Refer to Figure 2 for an overview diagram.

2.1. Bus Fabric

The RP2040 bus fabric routes addresses and data across the chip.

Figure 4 shows the high-level structure of the bus fabric. The main AHB-Lite crossbar routes addresses and data
between its 4 upstream ports and 10 downstream ports: up to four bus transfers can take place each cycle. All data
paths are 32 bits wide. Memory devices have dedicated ports on the main crossbar, to satisfy their high bandwidth
requirements. High-bandwidth AHB-Lite peripherals have a shared port on the crossbar, and an APB bridge provides bus
access to system control registers and lower-bandwidth peripherals.

Figure 4. RP2040 bus r Control
fabric overview.
Cortex-M0+ Cortex-MO+ System DMA
Core 0 Core 1 1-Write 1-Read

| | -

AHB-Lite Crossbar 4:10

AHB-Lite Splitter

SN D R A

ROM SRAMO SRAM1 SRAM2 SRAM3 SRAM4 SRAMS APB Flash PI0O PIOT USB
16 kB 64 kB 64 kB 64 kB 64 kB 4kB 4kB Bridge XIP
APB Splitter
Watch- Other peripherals
UARTO UART1 SPIO SPI 12C0 12C1 ADC PWM Timer 4o RTC and system
9 control registers

The bus fabric connects 4 AHB-Lite masters, i.e. devices which generate addresses:
® Processor core 0
® Processor core 1
® DMA controller Read port
® DMA controller Write port
These are routed through to 10 downstream ports on the main crossbar:
* ROM
® Flash XIP
® SRAM 0 to 5 (one port each)
® Fast AHB-Lite peripherals: PIO0, PIO1, USB, DMA control registers, XIP aux (one shared port)
® Bridge to all APB peripherals, and system control registers

The four bus masters can access any four different crossbar ports simultaneously, the bus fabric does not add wait
states to any AHB-Lite slave access. So at a system clock of 125MHz the maximum sustained bus bandwidth is

]
2.1. Bus Fabric 15

RP2040 Datasheet

2.0GBps. The system address map has been arranged to make this parallel bandwidth available to as many software
use cases as possible — for example, the striped SRAM alias (Section 2.6.2) scatters main memory accesses across
four crossbar ports (SRAMO...3), so that more memory accesses can proceed in parallel.

2.1.1. AHB-Lite Crossbar

At the centre of the RP2040 bus fabric is a 4:10 fully-connected crossbar. Its 4 upstream ports are connected to the 4
system bus masters, and the 10 downstream ports connect to the highest-bandwidth AHB-Lite slaves (namely the
memory interfaces) and to lower layers of the fabric. Figure 5 shows the structure of a 2:3 AHB-Lite crossbar, arranged
identically to the 4:10 crossbar on RP2040, but easier to show in the diagram.

Figure 5. A 2:3 AHB- Upstream Upstream
Lite crosshar. Each Port 0 Port 1
upstream port 1 i

connects to a splitter,
which routes bus

13 13
requests toward one
of the 3 downstream
ports, and routes
responses back. Each
downstream port
21

Splitter Splitter

connects to an arbiter, Arbiter Arbiter Arbiter
which safely manages 21 21
concurrent access to t t t
the port.
Downstream Downstream Downstream
Port 0 Port 1 Port 2

The crossbar is built from two components:

® Splitters
o Perform coarse address decode
o Route requests (addresses, write data) to the downstream port indicated by the initial address decode
o Route responses (read data, bus errors) from the correct arbiter back to the upstream port

® Arbiters
o Manage concurrent requests to a downstream port
o Route responses (read data, bus errors) to the correct splitter
o Implement bus priority rules

The main crossbar on RP2040 consists of 4 1:10 splitters and 10 4:1 arbiters, with a mesh of 40 AHB-Lite bus channels
between them. Note that, as AHB-Lite is a pipelined bus, the splitter may be routing back a response to an earlier
request from downstream port A, whilst a new request to downstream port B is already in progress. This does not incur
any cycle penalty.

2.1.1.1. Bus Priority

The arbiters in the main AHB-Lite crossbar implement a two-level bus priority scheme. Priority levels are configured per-
master, using the BUS_PRIORITY register in the BUSCTRL register block.

When there are multiple simultaneous accesses to same arbiter, any requests from high-priority masters (priority level
1) will be considered before any requests from low-priority masters (priority 0). If multiple masters of the same priority
level attempt to access the same slave simultaneously, a round-robin tie break is applied, i.e. the arbiter grants access
to each master in turn.

2.1. Bus Fabric 16

RP2040 Datasheet

O NoTE

Priority arbitration only applies to multiple masters attempting to access the same slave on the same cycle.
Accesses to different slaves, e.g. different SRAM banks, can proceed simultaneously.

When accessing a slave with zero wait states, such as SRAM (i.e. can be accessed once per system clock cycle), high-
priority masters will never observe any slowdown or other timing effects caused by accesses from low-priority masters.
This allows guaranteed latency and throughput for hard real time use cases; it does however mean a low-priority master
may get stalled until there is a free cycle.

2.1.1.2. Bus Performance Counters

The performance counters automatically count accesses to the main AHB-Lite crossbar arbiters. This can assist in
diagnosing performance issues, in high-traffic use cases.

There are four performance counters. Each is a 24-bit saturating counter. Counter values can be read from
BUSCTRL_PERFCTRx, and cleared by writing any value to BUSCTRL_PERFCTRx. Each counter can count one of the 20 available
events at a time, as selected by BUSCTRL_PERFSELx. The available bus events are:

PERFSEL | Event Description

X

0 APB access, Completion of an access to the APB arbiter (which is upstream of all APB
contested peripherals), which was previously delayed due to an access by another master.

1 APB access Completion of an access to the APB arbiter

2 FASTPERI access, Completion of an access to the FASTPERI arbiter (which is upstream of PIOs, DMA
contested config port, USB, XIP aux FIFO port), which was previously delayed due to an access

by another master.

3 FASTPERI access Completion of an access to the FASTPERI arbiter

4 SRAMS access, Completion of an access to the SRAMS arbiter, which was previously delayed due to
contested an access by another master.

5 SRAMS access Completion of an access to the SRAMS5 arbiter

6 SRAM4 access, Completion of an access to the SRAM4 arbiter, which was previously delayed due to
contested an access by another master.

7 SRAM4 access Completion of an access to the SRAM4 arbiter

8 SRAMS access, Completion of an access to the SRAM3 arbiter, which was previously delayed due to
contested an access by another master.

9 SRAM3 access Completion of an access to the SRAM3 arbiter

10 SRAM2 access, Completion of an access to the SRAM2 arbiter, which was previously delayed due to
contested an access by another master.

11 SRAM2 access Completion of an access to the SRAM2 arbiter

12 SRAMT access, Completion of an access to the SRAM1 arbiter, which was previously delayed due to
contested an access by another master.

13 SRAM1 access Completion of an access to the SRAM1 arbiter

14 SRAMO access, Completion of an access to the SRAMO arbiter, which was previously delayed due to
contested an access by another master.

15 SRAMO access Completion of an access to the SRAMO arbiter

2.1. Bus Fabric

17

RP2040 Datasheet
]

PERFSEL | Event Description

X

16 XIP_MAIN access, Completion of an access to the XIP_MAIN arbiter, which was previously delayed due
contested to an access by another master.

17 XIP_MAIN access Completion of an access to the XIP_MAIN arbiter

18 ROM access, Completion of an access to the ROM arbiter, which was previously delayed due to an
contested access by another master.

19 ROM access Completion of an access to the ROM arbiter

2.1.2. Atomic Register Access
Each peripheral register block is allocated 4kB of address space, with registers accessed using one of 4 methods,
selected by address decode.

® Addr + 0x0000 : normal read write access

® Addr + 0x1000 : atomic XOR on write

® Addr + 0x2000 : atomic bitmask set on write

® Addr + 0x3000 : atomic bitmask clear on write

This allows individual fields of a control register to be modified without performing a read-modify-write sequence in
software: instead the changes are posted to the peripheral, and performed in-situ. Without this capability, it is difficult to
safely access 10 registers when an interrupt service routine is concurrent with code running in the foreground, or when
the two processors are running code in parallel.

The four atomic access aliases occupy a total of 16kB. Most peripherals on RP2040 provide this functionality natively,
and atomic writes have the same timing as normal read/write access. Some peripherals (12C, UART, SPI and SSI)
instead have this functionality added using a bus interposer, which translates upstream atomic writes into downstream
read-modify-write sequences, at the boundary of the peripheral. This extends the access time by two system clock
cycles.

The SIO (Section 2.3.1), a single-cycle 10 block attached directly to the cores' 10 ports, does not support atomic
accesses at the bus level, although some individual registers (e.g. GPI0) have set/clear/xor aliases.

2.1.3. APB Bridge
The APB bridge interfaces the high-speed main AHB-Lite interconnect to the lower-bandwidth peripherals. Whilst the
AHB-Lite fabric offers zero-wait-state access everywhere, APB accesses have a cycle penalty:

® APB bus accesses take two cycles minimum (setup phase and access phase)

® The bridge adds an additional cycle to read accesses, as the bus request and response are registered

* The bridge adds two additional cycles to write accesses, as the APB setup phase can not begin until the AHB-Lite
write data is valid

As a result, the throughput of the APB portion of the bus fabric is somewhat lower than the AHB-Lite portion. However,
there is more than sufficient bandwidth to saturate the APB serial peripherals.

2.1.4. Narrow IO Register Writes

Memory-mapped 10 registers on RP2040 ignore the width of bus read/write accesses. They treat all writes as though
they were 32 bits in size. This means software can not use byte or halfword writes to modify part of an |0 register: any
write to an address where the 30 address MSBs match the register address will affect the contents of the entire
register.

2.1. Bus Fabric 18

RP2040 Datasheet
]

Table 4. List of
BUSCTRL registers

To update part of an IO register, without a read-modify-write sequence, the best solution on RP2040 is atomic
set/clear/XOR (see Section 2.1.2). Note that this is more flexible than byte or halfword writes, as any combination of
fields can be updated in one operation.

Upon a 8-bit or 16-bit write (such as a strb instruction on the Cortex-M0+), an 10 register will sample the entire 32-bit
write databus. The Cortex-M0+ and DMA on RP2040 will always replicate narrow data across the bus:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/system/narrow_io_write/narrow_io_write.c Lines 19 - 60

19 int main() {

20 stdio_init_all();

21

22 // We'll use WATCHDOG_SCRATCHO as a convenient 32 bit read/write register
23 // that we can assign arbitrary values to

24 io_rw_32 *scratch32 = &watchdog_hw->scratch[0];

2i5) // Alias the scratch register as two halfwords at offsets +0x0 and +0x2
26 volatile uint16_t *scratch16 = (volatile uint16_t *) scratch32;

27 // Alias the scratch register as four bytes at offsets +0x0, +0x1, +0x2, +6x3:
28 volatile uint8_t *scratch8 = (volatile uint8_t *) scratch32;

29

30 // Show that we can read/write the scratch register as normal:

31 printf("Writing 32 bit value\n");

32 *scratch32 = Oxdeadbeef;

83 printf("Should be @xdeadbeef: 8x%08x\n", *scratch32);

34

85 // We can do narrow reads just fine -- IO registers treat this as a 32 bit
36 // read, and the processor/DMA will pick out the correct byte lanes based
37 // on transfer size and address LSBs

38 printf("\nReading back 1 byte at a time\n");

39 // Little-endian!

40 printf("Should be ef be ad de: %02x %02x %02x %02x\n"

41 scratch8[@], scratch8[1], scratch8[2], scratch8[3]);

42

43 // The Cortex-M@+ and the RP2640 DMA replicate byte writes across the bus,
44 // and IO registers will sample the entire write bus always.

45 printf("\nWriting 8 bit value Oxa5 at offset 0\n");

46 scratch8[0] = @xa5;

47 // Read back the whole scratch register in one go

48 printf("Should be @xa5a5a5a5: 8x%08x\n", *scratch32);

49

50 // The IO register ignores the address LSBs [1:8] as well as the transfer
51 // size, so it doesn't matter what byte offset we use

52 printf("\nWriting 8 bit value at offset 1\n");

53 scratch8[1] = @x3c;

54 printf("Should be 8x3c3c3c3c: 0x%08x\n", *scratch32);

55!

56 // Halfword writes are also replicated across the write data bus

57 printf("\nWriting 16 bit value at offset 8\n");

58 scratch16[0] = @xfood;

59 printf("Should be @xfeedfeed: 6x%08x\n", *scratch32);

60 }

2.1.5. List of Registers

The Bus Fabric registers start at a base address of 0x40030000 (defined as BUSCTRL_BASE in SDK).

Offset Name Info

0x00 BUS_PRIORITY Set the priority of each master for bus arbitration.

2.1. Bus Fabric

19

https://github.com/raspberrypi/pico-examples/blob/master/system/narrow_io_write/narrow_io_write.c#L19-L60

RP2040 Datasheet

Offset Name Info

0x04 BUS_PRIORITY_ACK Bus priority acknowledge

0x08 PERFCTRO Bus fabric performance counter 0

0x0c PERFSELO Bus fabric performance event select for PERFCTRO
0x10 PERFCTR1 Bus fabric performance counter 1

0x14 PERFSEL1 Bus fabric performance event select for PERFCTR1
0x18 PERFCTR2 Bus fabric performance counter 2

OxT1c PERFSEL2 Bus fabric performance event select for PERFCTR2
0x20 PERFCTR3 Bus fabric performance counter 3

0x24 PERFSEL3 Bus fabric performance event select for PERFCTR3

BUSCTRL: BUS_PRIORITY Register
Offset: 0x00

Description

Set the priority of each master for bus arbitration.

Table 5. Bits Name Description Type Reset
BUS_PRIORITY
Register 31:13 | Reserved. - - -
12 DMA_W 0 - low priority, 1 - high priority RW 0x0
11:9 Reserved. = = =
8 DMA_R 0 - low priority, 1 - high priority RW 0x0
7:5 Reserved. = = =
4 PROC1 0 - low priority, 1 - high priority RW 0x0
3:1 Reserved. = = =
0 PROCO 0 - low priority, 1 - high priority RW 0x0
BUSCTRL: BUS_PRIORITY_ACK Register
Offset: 0x04
Description
Bus priority acknowledge
Table 6. Bits Description Type Reset
BUS_PRIORITY_ACK
Register 31:1 Reserved. - -
0 Goes to 1 once all arbiters have registered the new global priority levels. RO 0x0
Arbiters update their local priority when servicing a new nonsequential access.
In normal circumstances this will happen almost immediately.

BUSCTRL: PERFCTRO Register

Offset: 0x08

2.1. Bus Fabric 20

RP2040 Datasheet
]

Table 7. PERFCTRO
Register

Table 8. PERFSELO
Register

Description

Bus fabric performance counter 0

accesses, on a downstream port of the main crossbar.
0x00 — apb_contested
0x01 — apb

0x02 — fastperi_contested
0x03 — fastperi

0x04 — sram5_contested
0x05 — sram5

0x06 — sram4_contested
0x07 — sram4

0x08 — sram3_contested
0x09 — sram3

0x0a — sram2_contested
0x0b — sram2

0x0c — sram1_contested
0x0d — sram1

0x0e — sram0_contested
0x0f — sram0

0x10 — xip_main_contested
0x11 — xip_main

0x12 — rom_contested
0x13 — rom

Bits Description Type Reset
31:24 Reserved. = =
23:0 Busfabric saturating performance counter 0 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSELO
BUSCTRL: PERFSELO Register
Offset: 0x0c
Description
Bus fabric performance event select for PERFCTRO
Bits Description Type Reset
BIlES) Reserved. = =
4:0 Select an event for PERFCTRO. Count either contested accesses, or all RW 0x1f

BUSCTRL: PERFCTR1 Register

Offset: 0x10

Description

Bus fabric performance counter 1

2.1. Bus Fabric

21

RP2040 Datasheet
]

Table 9. PERFCTRT
Register

Table 10. PERFSEL1
Register

accesses, on a downstream port of the main crossbar.
0x00 — apb_contested
0x01 — apb

0x02 — fastperi_contested
0x03 — fastperi

0x04 — sramb5_contested
0x05 — sram5

0x06 — sram4_contested
0x07 — sram4

0x08 — sram3_contested
0x09 — sram3

0x0a — sram2_contested
0x0b — sram2

0x0c — sram1_contested
0x0d — sram1

0x0e — sram0_contested
0x0f — sram0

0x10 — xip_main_contested
0x11 — xip_main

0x12 — rom_contested
0x13 — rom

Bits Description Type Reset
31:24 Reserved. = =
23:0 Busfabric saturating performance counter 1 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSEL1
BUSCTRL: PERFSEL1 Register
Offset: 0x14
Description
Bus fabric performance event select for PERFCTR1
Bits Description Type Reset
BIlES Reserved. - -
4.0 Select an event for PERFCTR1. Count either contested accesses, or all RW ox1f

BUSCTRL: PERFCTR2 Register

Offset: 0x18

Description

Bus fabric performance counter 2

2.1. Bus Fabric

22

RP2040 Datasheet
]

Table 11. PERFCTR2
Register

Table 12. PERFSEL2
Register

accesses, on a downstream port of the main crossbar.
0x00 — apb_contested
0x01 — apb

0x02 — fastperi_contested
0x03 — fastperi

0x04 — sramb5_contested
0x05 — sram5

0x06 — sram4_contested
0x07 — sram4

0x08 — sram3_contested
0x09 — sram3

0x0a — sram2_contested
0x0b — sram2

0x0c — sram1_contested
0x0d — sram1

0x0e — sram0_contested
0x0f — sram0

0x10 — xip_main_contested
0x11 — xip_main

0x12 — rom_contested
0x13 — rom

Bits Description Type Reset
31:24 Reserved. = =
23:0 Busfabric saturating performance counter 2 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSEL2
BUSCTRL: PERFSEL2 Register
Offset: Ox1c
Description
Bus fabric performance event select for PERFCTR2
Bits Description Type Reset
BIlES Reserved. - -
4.0 Select an event for PERFCTR2. Count either contested accesses, or all RW ox1f

BUSCTRL: PERFCTRS3 Register

Offset: 0x20

Description

Bus fabric performance counter 3

2.1. Bus Fabric

23

RP2040 Datasheet
]

Table 13. PERFCTR3
Register

Table 14. PERFSEL3
Register

Table 15. Address
Map Summary

Bits Description Type Reset
31:24 Reserved. = =
23:0 Busfabric saturating performance counter 3 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSEL3
BUSCTRL: PERFSEL3 Register
Offset: 0x24
Description
Bus fabric performance event select for PERFCTR3
Bits Description Type Reset
BIlES Reserved. - -
4.0 Select an event for PERFCTR3. Count either contested accesses, or all RW ox1f

accesses, on a downstream port of the main crossbar.
0x00 — apb_contested
0x01 — apb

0x02 — fastperi_contested
0x03 — fastperi

0x04 — sramb5_contested
0x05 — sram5

0x06 — sram4_contested
0x07 — sram4

0x08 — sram3_contested
0x09 — sram3

0x0a — sram2_contested
0x0b — sram2

0x0c — sram1_contested
0x0d — sram1

0x0e — sram0_contested
0x0f — sram0

0x10 — xip_main_contested
0x11 — xip_main

0x12 — rom_contested
0x13 — rom

2.2. Address Map

The address map for the device is split in to sections as shown in Table 15. Details are shown in the following sections.

Unmapped address ranges raise a bus error when accessed.

2.2.1. Summary

ROM 0x00000000
XIP 0x10000000
SRAM 0x20000000
APB Peripherals 0x40000000

2.2. Address Map

24

RP2040 Datasheet
|

AHB-Lite Peripherals 0x50000000
IOPORT Registers 0xd0000000
Cortex-MO+ internal registers 0xe0000000

2.2.2. Detail

ROM:
ROM_BASE 0x00000000
XIP:
XIP_BASE 0x10000000
XIP_NOALLOC_BASE 0x11000000
XIP_NOCACHE_BASE 0x12000000
XIP_NOCACHE_NOALLOC_BASE 0x13000000
XIP_CTRL_BASE 0x14000000
XIP_SRAM_BASE 0x15000000
XIP_SRAM_END 0x15004000
XIP_SSI_BASE 0x18000000

SRAM. SRAMO-3 striped:

SRAM_BASE 0x20000000
SRAM_STRIPED_BASE 0x20000000
SRAM_STRIPED_END 0x20040000

SRAM 4-5 are always non-striped:

SRAM4_BASE 0x20040000
SRAMS5_BASE 0x20041000
SRAM_END 0x20042000

Non-striped aliases of SRAMO-3:

SRAMO_BASE 0x21000000
SRAM1_BASE 0x21010000
SRAM2_BASE 0x21020000
SRAM3_BASE 0x21030000

APB Peripherals:

SYSINFO_BASE 0x40000000
SYSCFG_BASE 0x40004000
CLOCKS_BASE 0x40008000

]
2.2. Address Map 25

RP2040 Datasheet
|

RESETS_BASE 0x4000c000
PSM_BASE 0x40010000
IO_BANKO_BASE 0x40014000
I0_QSPI_BASE 0x40018000
PADS_BANKO_BASE 0x4001c000
PADS_QSPI_BASE 0x40020000
XOSC_BASE 0x40024000
PLL_SYS_BASE 0x40028000
PLL_USB_BASE 0x4002c000
BUSCTRL_BASE 0x40030000
UARTO_BASE 0x40034000
UART1_BASE 0x40038000
SPIO_BASE 0x4003¢000
SPIT1_BASE 0x40040000
12CO_BASE 0x40044000
I12C1_BASE 0x40043000
ADC_BASE 0x4004c000
PWM_BASE 0x40050000
TIMER_BASE 0x40054000
WATCHDOG_BASE 0x40058000
RTC_BASE 0x4005c000
ROSC_BASE 0x40060000
VREG_AND_CHIP_RESET_BASE 0x40064000
TBMAN_BASE 0x4006c000
AHB-Lite peripherals:
DMA_BASE 0x50000000
USB has a DPRAM at its base followed by registers:
USBCTRL_BASE 0x50100000
USBCTRL_DPRAM_BASE 0x50100000
USBCTRL_REGS_BASE 0x50110000

Remaining AHB-Lite peripherals:

PIO0_BASE 0x50200000

PIO1_BASE 0x50300000

XIP_AUX_BASE 0x50400000
IOPORT Peripherals:

]
2.2. Address Map 26

RP2040 Datasheet
]

Figure 6. Two Cortex-
MO0+ processors, each
with a dedicated 32-bit
AHB:-Lite bus port, for
code fetch, loads and
stores. The SIO is
connected to the
single-cycle IOPORT
bus of each processor,
and provides GPIO
access, two-way
communications, and
other core-local
peripherals. Both
processors can be
debugged via a single
multi-drop Serial Wire
Debug bus. 26
interrupts (plus NMI)
are routed to the NVIC
and WIC on each
processor.

SIO_BASE 0xd0000000
Cortex-MO+ Internal Peripherals:
PPB_BASE 0xe0000000

2.3. Processor subsystem

The RP2040 processor subsystem consists of two Arm Cortex-M0+ processors — each with its standard internal Arm
CPU peripherals — alongside external peripherals for GPIO access and inter-core communication. Details of the Arm

Cortex-MO+ processors, including the specific feature configuration used on RP2040, can be found in Section 2.4.

From peripherals

From external debugger

Serial Wi

Interrupts

e Debug

A 4

Y +

NVIC | DAP

Core 0
Cortex-M0+

R

NVIC | DAP

Bus Interface

«€— I0PORT <— IOPORT —»

Events

Core 1
Cortex-MO+

Bus Interface

AHB-Lite

To bus fabric

© NoTE

GPIO x36

To GPIO Muxing

AHB-Lite

To bus fabric

refer to processor 0, and processor 1 respectively.

The terms core0 and core, proc0 and proc1 are used interchangeably in RP2040Q’s registers and documentation to

The processors use a number of interfaces to communicate with the rest of the system:

® Each processor uses its own independent 32-bit AHB-Lite bus to access memory and memory-mapped peripherals
(more detail in Section 2.7)

® The single-cycle 10 block provides high-speed, deterministic access to GPIOs via each processor's IOPORT

® 26 system-level interrupts are routed to both processors

® A multi-drop Serial Wire Debug bus provides debug access to both processors from an external debug host

2.3.1.SI0

The Single-cycle 10 block (SIO) contains several peripherals that require low-latency, deterministic access from the
processors. It is accessed via each processor's IOPORT: this is an auxiliary bus port on the Cortex-M0+ which can
perform rapid 32-bit reads and writes. The SIO has a dedicated bus interface for each processor’'s IOPORT, as shown in
Figure 7. Processors access their IOPORT with normal load and store instructions, directed to the special IOPORT

address segment, 0xd0000000---0xdfffffff. The SIO appears as memory-mapped hardware within the IOPORT space.

|
2.3. Processor subsystem

27

RP2040 Datasheet

Figure 7. The single-
cycle 10 block
contains memory-
mapped hardware
which the processors
must be able to
access quickly. The
FIFOs and spinlocks
support message
passing and
synchronisation
between the two
cores. The shared
GPIO registers provide
fast and concurrency-
safe direct access to
GPIO-capable pins.
Some core-local
arithmetic hardware
can be used to
accelerate common
tasks on the
Processors.

© NoTE

The SIO is not connected to the main system bus due to its tight timing requirements. It can only be accessed by the
processors, or by the debugger via the processor debug ports.

Core 0 Core 1
Single-cycle 10
—— IOPORT I0PORT ——
<« CPUID O CPUID 1 >
> FIFOOto 1 >
< FIFO1to0 <
Bus . Bus
<> Hardware Spinlock x32 <>
Interface Interface
<—>» Integer Divider Integer Divider <€
<—>» |Interpolator 0 Interpolator 0 <€
<—>» Interpolator 1 Interpolator 1 <€
A A
A A
GPIO Registers Shared, atomic
set/clear/xor
GPIO x36
To GPIO Muxing

All IOPORT reads and writes (and therefore all SIO accesses) take place in exactly one cycle, unlike the main AHB-Lite
system bus, where the Cortex-M0+ requires two cycles for a load or store, and may have to wait longer due to
contention from other system bus masters. This is vital for interfaces such as GPIO, which have tight timing
requirements.

SIO registers are mapped to word-aligned addresses in the range 0xd0000000---0xd000017c. The remainder of the IOPORT
space is reserved for future use.

The SIO peripherals are described in more detail in the following sections.

2.3.1.1. CPUID

The register CPUID is the first register in the IOPORT space. Core 0 reads a value of 0 when accessing this address, and
core 1 reads a value of 1. This is a convenient method for software to determine on which core it is running. This is
checked during the initial boot sequence: both cores start running simultaneously, core 1 goes into a deep sleep state,
and core 0 continues with the main boot sequence.

2.3. Processor subsystem

28

RP2040 Datasheet

© IMPORTANT

CPUID should not be confused with the Cortex-M0+ CPUID register (Section 2.4.4.1.1) on each processor’s internal
Private Peripheral Bus, which lists the processor’s part number and version.

2.3.1.2. GPIO Control

The processors have access to GPIO registers for fast and direct control of pins with GPIO functionality. There are two
identical sets of registers:

® GP10_x for direct control of 10 bank 0 (user GPIOs 0 to 29, starting at the LSB)

® GPI0_HI_x for direct control of the QSPI 10 bank (in the order SCLK, SSn, SDO, SD1, SD2, SD3, starting at the LSB)

© NoTE

To drive a pin with the SIO’s GPIO registers, the GPIO multiplexer for this pin must first be configured to select the
SIO GPIO function. See Table 278.

These GPIO registers are shared between the two cores, and both cores can access them simultaneously. There are
three registers for each bank:

e Output registers, GPIO_OUT and GPIO_HI_OUT, are used to set the output level of the GPIO (1/0 for high/low)

® Qutput enable registers, GPIO_OE and GPIO_HI_OE, are used to enable the output driver. 0 for high-impedance, 1
for drive high/low based on GPIO_OUT and GPIO_HI_OUT.

® |nput registers, GPIO_IN and GPIO_HI_IN, allow the processor to sample the current state of the GPIOs

Reading GPIO_IN returns all 30 GPIO values (or 6 for GPIO_HI_IN) in a single read. Software can then mask out
individual pins it is interested in.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 674 - 676

674 static inline bool gpio_get(uint gpio) {
675 return !'!'((1ul << gpio) & sio_hw->gpio_in);
676 }

The 0UT and OE registers also have atomic SET, CLR, and XOR aliases, which allows software to update a subset of the
pins in one operation. This is vital not only for safe parallel GPIO access between the two cores, but also safe
concurrent GPIO access in an interrupt handler and foreground code running on one core.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 696 - 698

696 static inline void gpio_set_mask(uint32_t mask) {
697 sio_hw->gpio_set = mask;
698 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 705 - 707

705 static inline void gpio_clr_mask(uint32_t mask) {
706 sio_hw->gpio_clr = mask;
707 }

|
2.3. Processor subsystem 29

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L674-L676
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L696-L698
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L705-L707

RP2040 Datasheet
]

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 748 - 754

748 static inline void gpio_put(uint gpio, bool value) {

749 uint32_t mask = 1ul << gpio;
750 if (value)

751 gpio_set_mask(mask) ;

752 else

753 gpio_clr_mask(mask) ;

754 }

If both processors write to an 0UT or OF register (or any of its SET/CLR/XOR aliases) on the same clock cycle, the result
is as though core 0 wrote first, and core 1 wrote immediately afterward. For example, if core 0 SETs a bit, and core 1
simultaneously XORs it, the bit will be set to 0, irrespective of it original value.

© NoTE

This is a conceptual model for the result that is produced when two cores write to a GPIO register simultaneously.
The register does not actually contain this intermediate value at any point. In the previous example, if the pin is
initially 0, and core 0 performs a SET while core 1 performs a XOR, the GPIO output remains low without any positive
glitch.

2.3.1.3. Hardware Spinlocks

The SIO provides 32 hardware spinlocks, which can be used to manage mutually-exclusive access to shared software
resources. Each spinlock is a one-bit flag, mapped to a different address (from SPINLOCKO to SPINLOCK31). Software
interacts with each spinlock with one of the following operations:

® Read: attempt to claim the lock. Read value is nonzero if the lock was successfully claimed, or zero if the lock had
already been claimed by a previous read.

® Write (any value): release the lock. The next attempt to claim the lock will be successful.
If both cores try to claim the same lock on the same clock cycle, core 0 succeeds.

Generally software will acquire a lock by repeatedly polling the lock bit ("spinning” on the lock) until it is successfully
claimed. This is inefficient if the lock is held for long periods, so generally the spinlocks should be used to protect the
short critical sections of higher-level primitives such as mutexes, semaphores and queues.

For debugging purposes, the current state of all 32 spinlocks can be observed via SPINLOCK_ST.

2.3.1.4. Inter-processor FIFOs (Mailboxes)

The SIO contains two FIFOs for passing data, messages or ordered events between the two cores. Each FIFO is 32 bits
wide, and eight entries deep. One of the FIFOs can only be written by core 0, and read by core 1. The other can only be
written by core 1, and read by core 0.

Each core writes to its outgoing FIFO by writing to FIFO_WR, and reads from its incoming FIFO by reading from FIFO_RD.
A status register, FIFO_ST, provides the following status signals:

® Incoming FIFO contains data (VLD)

® Qutgoing FIFO has room for more data (RDY)

® The incoming FIFO was read from while empty at some point in the past (ROE)
® The outgoing FIFO was written to while full at some point in the past (WOF)

Writing to the outgoing FIFO while full, or reading from the incoming FIFO while empty, does not affect the FIFO state.
The current contents and level of the FIFO is preserved. However, this does represent some loss of data or reception of
invalid data by the software accessing the FIFO, so a sticky error flag is raised (ROE or WOF).

|
2.3. Processor subsystem 30

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L748-L754

RP2040 Datasheet

The SIO has a FIFO IRQ output for each core, mapped to system IRQ numbers 15 and 16. Each IRQ output is the logical
OR of the VLD, ROE and WOF bits in that core’s FIFO_ST register: that is, the IRQ is asserted if any of these three bits is high,
and clears again when they are all low. The ROE and W0F flags are cleared by writing any value to FIFO_ST, and the VLD flag
is cleared by reading data from the FIFO until empty.

If the corresponding interrupt line is enabled in the Cortex-M0+ NVIC, then the processor will take an interrupt each time
data appears in its FIFO, or if it has performed some invalid FIFO operation (read on empty, write on full). Typically Core
0 will use IRQ15 and core 1 will use IRQ16. If the IRQs are used the other way round then it is difficult for the core that
has been interrupted to correctly identify the reason for the interrupt as the core doesn’t have access to the other core’s
FIFO status register.

O NOTE

ROE and WOF only become set if software misbehaves in some way. Generally, the interrupt handler will trigger when
data appears in the FIFO (raising the VLD flag), and the interrupt handler clears the IRQ by reading data from the FIFO
until VLD goes low once more.

The inter-processor FIFOs and the Cortex-M0+ Event signals are used by the bootrom (Section 2.8) wait_for_vector
routine, where core 1 remains in a sleep state until it is woken, and provided with its initial stack pointer, entry point and
vector table through the FIFO.

2.3.1.5. Integer Divider

The SIO provides one 8-cycle signed/unsigned divide/modulo module to each of the cores. Calculation is started by
writing a dividend and divisor to the two argument registers, DIVIDEND and DIVISOR. The divider calculates the quotient /
and remainder % of this division over the next 8 cycles, and on the 9th cycle the results can be read from the two result
registers DIV_QUOTIENT and DIV_REMAINDER. A 'ready' bit in register DIV_CSR can be polled to wait for the calculation
to complete, or software can insert a fixed 8-cycle delay.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S Lines 10 - 14

10 regular_func_with_section hw_divider_divmod_s32

1 1dr r3, =(SIO_BASE)
12 str r@, [r3, #SIO_DIV_SDIVIDEND_OFFSET]
13 str r1, [r3, #SIO_DIV_SDIVISOR_OFFSET]
14 b hw_divider_divmod_return

© NoTE

Software is free to perform other non-divider operations during these 8 cycles.

There are two aliases of the operand registers: writing to the signed alias (DIV_SDIVIDEND and DIV_SDIVISOR) will
initiate a signed calculation, and the other (DIV_UDIVIDEND and DIV_UDIVISOR) will initiate an unsigned calculation.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S Lines 18 - 22

18 regular_func_with_section hw_divider_divmod_u32

19 1dr r3, =(SIO_BASE)

20 str r@, [r3, #SIO_DIV_UDIVIDEND_OFFSET]
21 str r1, [r3, #SIO_DIV_UDIVISOR_OFFSET]
22 b hw_divider_divmod_return

2.3. Processor subsystem 31

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S#L10-L14
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S#L18-L22

RP2040 Datasheet

O NoTE

A new calculation begins immediately with every write to an operand register, and a new operand write immediately
squashes any calculation currently in progress. For example, when dividing many numbers by the same divisor, only
xDIVISOR needs to be written, and the signedness of each calculation is determined by whether SDIVIDEND or UDIVIDEND
is written.

To support save and restore on interrupt handler entry/exit (or on e.g. an RTOS context switch), the result registers are
also writable. Writing to a result register will cancel any operation in progress at the time. The DIV_CSR.DIRTY flag can
help make save/restore more efficient: this flag is set when any divider register (operand or result) is written to, and
cleared when the quotient is read.

O NoTE

When enabled, the default divider AEABI support maps C level / and % to the hardware divider. When building
software using the SDK and using the divider directly, it is important to read the quotient register last. This ensures
the partial divider state will be correctly saved and restored by any interrupt code that uses the divider. You should
read the quotient register whether you need the value or not.

The SDK module pico_divider https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_divider/include/
pico/divider.h provides both the AEABI implementation needed to hook the C / and % operators for both 32-bit and 64-bit
integer division, as well as some additional C functions that return quotients and remainders at the same time. All of
these functions correctly save and restore the hardware divider state (when dirty) so that they can be used in either user
or IRQ handler code.

The SDK module hardware_divider https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/
hardware_divider/include/hardware/divider.h provides lower level macros and helper functions for accessing the
hardware_divider, but these do not save and restore the hardware divider state (although this header does provide
separate functions to do so).

2.3.1.6. Interpolator

Each core is equipped with two interpolators (INTERPG and INTERP1) which can accelerate tasks by combining certain pre-
configured operations into a single processor cycle. Intended for cases where the pre-configured operation is repeated
many times, this results in code which uses both fewer CPU cycles and fewer CPU registers in the time-critical sections
of the code.

The interpolators are used to accelerate audio operations within the SDK, but their flexible configuration makes it
possible to optimise many other tasks such as quantization and dithering, table lookup address generation, affine
texture mapping, decompression and linear feedback.

|
2.3. Processor subsystem 32

https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_divider/include/pico/divider.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_divider/include/pico/divider.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/include/hardware/divider.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/include/hardware/divider.h

RP2040 Datasheet

Figure 8. An
interpolator. The two
accumulator registers
and three base
registers have single-
cycle read/write
access from the
processor. The
interpolator is
organised into two
lanes, which perform
masking, shifting and
sign-extension
operations on the two
accumulators. This
produces three
possible results, by
adding the
intermediate
shift/mask values to
the three base
registers. From left to
right, the multiplexers
on each lane are
controlled by the
following flags in the
CTRL registers:
CROSS_RESULT,
CROSS_INPUT,
SIGNED, ADD_RAW.

Base 0
Result 0 0 Si]
Accumulator 0 Right Shift ——» Mask 'gr-exten Result 0
fromMask
Result 1 1
Accumulator 1
Base 2 Result 2
Accumulator 0
Result 0 1 si -
Accumulator 1 Right Shift ——» Mask 'gn-exten Result 1
fromMask
Result 1 0
Base 1

The processor can write or read any interpolator register in one cycle, and the results are ready on the next cycle. The
processor can also perform an addition on one of the two accumulators ACCUM@ or ACCUM1 by writing to the corresponding
ACCUMx_ADD register.

The three results are available in the read-only locations PEEK®, PEEK1, PEEK2. Reading from these locations does not
change the state of the interpolator. The results are also aliased at the locations P0P@, POP1, POP2; reading from a POPx alias
returns the same result as the corresponding PEEKx, and simultaneously writes back the lane results to the
accumulators. This can be used to advance the state of interpolator each time a result is read.

Additionally the interpolator supports simple fractional blending between two values as well as clamping values such
that they lie within a given range.

The following example shows a trivial example of popping a lane result to produce simple iterative feedback.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 11 - 23

11 void times_table() {

12 puts("9 times table:");
13
14 // Initialise lane @ on interp@ on this core
15 interp_config cfg = interp_default_config();
16 interp_set_config(interp@, 0, &cfg);
17
18 interp@->accum[@] = @;
19 interp@->base[0] = 9;
20
21 for (int i = 0; i < 10; ++1i)
22 printf("%d\n", interp@->pop[@]);
23 }
© NoTE

By sheer coincidence, the interpolators are extremely well suited to SNES MODE7-style graphics routines. For
example, on each core, INTERPO can provide a stream of tile lookups for some affine transform, and INTERP1 can

provide offsets into the tiles for the same transform.

2.3.1.6.1. Lane Operations

2.3. Processor subsystem 33

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L11-L23

RP2040 Datasheet

Figure 9. Each lane of
each interpolator can
be configured to
perform mask, shift
and sign-extension on
one of the
accumulators. This is
fed into adders which
produces final results,
which may optionally
be fed back into the
accumulators with
each read. The
datapath can be
configured using a
handful of 32-bit
multiplexers. From left
to right, these are
controlled by the
following CTRL flags:
CROSS_RESULT,
CROSS_INPUT,
SIGNED, ADD_RAW.

Result 0

Result 1

Add to BASE1
(for PEEKO/POPO)

Accumulator 0 » Right Shift » Mask Sign-extend

fromMask

Add to BASE2
(forms part of
PEEK2/POP2)

Accumulator 1

Each lane performs these three operations, in sequence:

e Aright shift by CTRL_LANEx_SHIFT (O to 31 bits)

® A mask of bits from CTRL_LANEx_MASK_LSB to CTRL_LANEx_MASK_MSB inclusive (each ranging from bit 0 to bit 31)

® A sign extension from the top of the mask, i.e. take bit CTRL_LANEx_MASK_MSB and OR it into all more-significant bits, if
CTRL_LANEx_SIGNED is set

For example, if:

® ACCUM@ = Oxdeadbeef

® (CTRL_LANE@_SHIFT =8

® CTRL_LANEQ@_MASK_LSB = 4

® (TRL_LANE@_MASK_MSB =7

® (CTRL_SIGNED =1

Then lane 0 would produce the following results at each stage:

® Right shift by 8 to produce 0x08deadbe

® Mask bits 7 to 4 to produce 0x00deadbe & 0x 0 = 0x bo

® Sign-extend up from bit 7 to produce oxffffffbo

In software:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 25 - 46

25 void moving_mask() {

26 interp_config cfg = interp_default_config();

27 interp@->accum[@] = @x1234abcd;

28

29 puts("Masking:");

30 printf("ACCUMB = %@8x\n", interp@->accum[@]);

31 for (int 1 = 0; i < 8; ++i) {

32 // LSB, then MSB. These are inclusive, so 0,31 means "the entire 32 bit register”

33 interp_config_set_mask(&cfg, i * 4, i * 4 + 3);

34 interp_set_config(interp®, 0, &cfg);

35 // Reading from ACCUMx_ADD returns the raw lane shift and mask value, without BASEx
added

36 printf("Nibble %d: %@8x\n", i, interp®@->add_raw[0]);

37 }

38

39 puts("Masking with sign extension:");

40 interp_config_set_signed(&cfg, true);

41 for (int i = 0; i < 8; ++1i) {

42 interp_config_set_mask(&cfg, i * 4, i * 4 + 3);

43 interp_set_config(interp®, 0, &cfg);

44 printf("Nibble %d: %@8x\n", i, interp@->add_raw[0]);

45 }

46 }

The above example should print:

2.3. Processor subsystem

34

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L25-L46

RP2040 Datasheet

ACCUM@ = 1234abcd
Nibble ©: 0000000d
Nibble 1: 000000cO
Nibble 2: 00000b00
Nibble 3: 00002000
Nibble 4: 00040000
Nibble 5: 00300000
Nibble 6: 02000000
Nibble 7: 10000000
Masking with sign extension:
Nibble @: fffffffd
Nibble 1: ffffffce
Nibble 2: fffffboo
Nibble 3: ffffa0o00
Nibble 4: 00040000
Nibble 5: 00300000
Nibble 6: 02000000
Nibble 7: 10000000

Changing the result and input multiplexers can create feedback between the accumulators

dithering.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 48 - 63

48 void cross_lanes() {

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 }

This should print:

PEEK®,
PEEK®,
PEEK®,
PEEK®,
PEEK®,
PEEK®,
PEEK®,
PEEKO,
PEEK®,
PEEK®,

interp_config cfg = interp_default_config();
interp_config_set_cross_result(&cfg, true);
// ACCUMO gets lane 1 result:
interp_set_config(interp®, 0, &cfg);

// ACCUM1 gets lane 0 result:
interp_set_config(interp®, 1, &cfg);

interp@->accum[@]
interp@->accum[1]
interp0->base[0]
interp@->base[1]

123;
456;

15
9;

puts("Lane result crossover:");
=0; i< 10; ++i)

for (int i
printf("PEEK®, POP1: %d, %d\n", interp@->peek[@], interp®->pop[1]);

POP1:
POP1:
ROEIE
POP1:
POP1:
POP1:
POP1:
POP1:
POP1:
POP1:

124,
457,
125,
458,
126,
459,
127,
460,
128,
461,

456
124
457
125
458
126
459
127
460
128

. This is useful e.g. for audio

2.3. Processor subsystem

35

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L48-L63

RP2040 Datasheet
]

2.3.1.6.2. Blend Mode

Blend mode is available on INTERPO on each core, and is enabled by the CTRL_LANE@_BLEND control flag. It performs linear
interpolation, which we define as follows:

x = xo+ a(x; — xq), for0 < a<1

Where Xq is the register BASE®, X1 is the register BASE1, and a is a fractional value formed from the least significant 8 bits
of the lane 1 shift and mask value.

Blend mode has the following differences from normal mode:

® PEEK@, POPO return the 8-bit alpha value (the 8 LSBs of the lane 1 shift and mask value), with zeroes in result bits 31
down to 24.

® PEEK1, POP1 return the linear interpolation between BASEQ and BASE1
® PEEK2, POP2 do not include lane 1 result in the addition (i.e. it is BASE2 + lane O shift and mask value)

The result of the linear interpolation is equal to BASE@ when the alpha value is 0, and equal to BASE® + 255/256 * (BASE1 -
BASE0) when the alpha value is all-ones.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 65 - 84

65 void simple_blend1() {

66 puts("Simple blend 1:");

67

68 interp_config cfg = interp_default_config();
69 interp_config_set_blend(&cfg, true);

70 interp_set_config(interp®, 0, &cfg);

71

72 cfg = interp_default_config();

73 interp_set_config(interp®, 1, &cfg);

74

75 interp@->base[0] = 500;

76 interp@->base[1] = 1000;

77

78 for (int 1 = 0; i <= 6; i++) {

79 // set fraction to value between 6 and 255
80 interp@->accum[1] = 255 * i / 6;

81 // = 500 + (1000 - 560) * i / 6;

82 printf("%d\n", (int) interp®->peek[1]);
83 }

84 }

This should print (note the 255/256 resulting in 998 not 1000):

500
582
666
748
832
914
998

CTRL_LANET_SIGNED controls whether BASE@ and BASE1 are sign-extended for this interpolation (this sign extension is
required because the interpolation produces an intermediate product value 40 bits in size). CTRL_LANE@_SIGNED continues
to control the sign extension of the lane 0 intermediate result in PEEK2, POP2 as normal.

|
2.3. Processor subsystem 36

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L65-L84

RP2040 Datasheet
]

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 87 - 118

87 void print_simple_blend2_results(bool is_signed) {

88 // lane 1 signed flag controls whether base 6/1 are treated as signed or unsigned
89 interp_config cfg = interp_default_config();
90 interp_config_set_signed(&cfg, is_signed);
91 interp_set_config(interp®, 1, &cfg);

92

93 for (int i = 0; i <= 6; i++) {

94 interp@->accum[1] = 255 * i / 6;

95 if (is_signed) {

96 printf("%d\n", (int) interp@->peek[1]);
97 } else {

98 printf("0x%08x\n", (uint) interp@->peek[1]);
99 }

100 }

101 }

102

103 void simple_blend2() {

104 puts("Simple blend 2:");

105

106 interp_config cfg = interp_default_config();
107 interp_config_set_blend(&cfg, true);

108 interp_set_config(interp®, 0, &cfg);

109

110 interp@->base[0] = -1000;

111 interp@->base[1] = 1000;

112

113 puts("signed:");

114 print_simple_blend2_results(true);

115

116 puts("unsigned:");

117 print_simple_blend2_results(false);

118 }

This should print:

signed:
-1000

-672

-336

-8

328

656

992
unsigned:
oxfffffc18
oxd5fffd6e
Oxaafffebd
ox80fffff8
0x56000148
0x2c000290
0x010003e0

Finally, in blend mode when using the BASE_1AND® register to send a 16-bit value to each of BASE@ and BASE1 with a single
32-bit write, the sign-extension of these 16-bit values to full 32-bit values during the write is controlled by
CTRL_LANE1_SIGNED for both bases, as opposed to non-blend-mode operation, where CTRL_LANE@_SIGNED affects extension
into BASE@ and CTRL_LANE1_SIGNED affects extension into BASE1.

|
2.3. Processor subsystem 37

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L87-L118

RP2040 Datasheet
]

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 121 - 142

121 void simple_blend3() {

122 puts("Simple blend 3:");

123

124 interp_config cfg = interp_default_config();
125 interp_config_set_blend(&cfg, true);

126 interp_set_config(interp®, 0, &cfg);

127

128 cfg = interp_default_config();

129 interp_set_config(interp®, 1, &cfg);

130

131 interp@->accum[1] = 128;

132 interp@->based1 = 0x30005000;

133 printf("0x%08x\n", (int) interp@->peek[1]);
134 interpB@->based1 = 0xe000f000;

135 printf("0x%08x\n", (int) interp@->peek[1]);
136

137 interp_config_set_signed(&cfg, true);

138 interp_set_config(interp@d, 1, &cfg);

139

140 interp@->based1 = 0xe000f000;

141 printf("0x%08x\n", (int) interp@->peek[1]);
142 }

This should print:

0x00004000
0x0000e800
oxffffe800

2.3.1.6.3. Clamp Mode

Clamp mode is available on INTERP1 on each core, and is enabled by the CTRL_LANE@_CLAMP control flag. In clamp mode, the
PEEK@/POPO result is the lane value (shifted, masked, sign-extended Accume) clamped between BASE@ and BASET. In other
words, if the lane value is greater than BASE1, a value of BASE1 is produced; if less than BASE®, a value of BASE® is produced;
otherwise, the value passes through. No addition is performed. The signedness of these comparisons is controlled by
the CTRL_LANE@_SIGNED flag.

Other than this, the interpolator behaves the same as in normal mode.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 188 - 206

188 void clamp() {

189 puts("Clamp:");

190 interp_config cfg = interp_default_config();

191 interp_config_set_clamp(&cfg, true);

192 interp_config_set_shift(&cfg, 2);

193 // set mask according to new position of sign bit..
194 interp_config_set_mask(&cfg, 0, 29);

195 // ...so that the shifted value is correctly sign extended
196 interp_config_set_signed(&cfg, true);

197 interp_set_config(interp1, 0, &cfg);

198

199 interp1->base[0] = 0;

200 interpl->base[1] = 255;

201

202 for (int i = -1024; i <= 1024; i += 256) {

2.3. Processor subsystem 38

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L121-L142
https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L188-L206

RP2040 Datasheet

203
204
205
206 }

interpl->accum[@] = i;
printf("%d\t%d\n", i, (int) interpl1->peek[0]);

This should print:

-1024 @
-768)
-512]
-256 0
]]
256 64
512 128
768 192
1624 255
2.3.1.6.4. Sample Use Case: Linear Interpolation

Linear interpolation is a more complete example of using blend mode in conjunction with other interpolator
functionality:

In this example, AccUMe is used to track a fixed point (integer/fraction) position within a list of values to be interpolated.
Lane 0 is used to produce an address into the value array for the integer part of the position. The fractional part of the
position is shifted to produce a value from 0-255 for the blend. The blend is performed between two consecutive values

in the array.

Finally the fractional position is updated via a single write to ACCUMO_ADD_RAW.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 144 - 186

144 void linear_interpolation() {

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

puts("Linear interpolation:");
const int uv_fractional_bits = 12;

// for lane @

// shift and mask XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum @)
// to 0000 00O 00OX XXXX XXXX XXXX XXXX XXX0

// i.e. non fractional part times 2 (for uint16_t)

interp_config cfg = interp_default_config();
interp_config_set_shift(&cfg, uv_fractional_bits - 1);
interp_config_set_mask(&cfg, 1, 32 - uv_fractional_bits);
interp_config_set_blend(&cfg, true);

interp_set_config(interp®, 0, &cfg);

// for lane 1
// shift XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum @ via cross input)
// to 0000 XXXX XXXX XXXX XXXX FFFF FFFF FFFF

cfg = interp_default_config();

interp_config_set_shift(&cfg, uv_fractional_bits - 8);
interp_config_set_signed(&cfg, true);
interp_config_set_cross_input(&cfg, true); // signed blending
interp_set_config(interp®, 1, &cfg);

int16_t samples[] = {0, 10, -206, -1000, 500};

// step is 1/4 in our fractional representation

2.3. Processor subsystem

39

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L144-L186

RP2040 Datasheet
]

171 uint step = (1 << uv_fractional_bits) / 4;

172

173 interp@->accum[@] = @; // initial sample_offset;

174 interp@->base[2] = (uintptr_t) samples;

175 for (int i = 0; 1 < 16; i++) {

176 // result2 = samples + (lane@ raw result)

177 // i.e. ptr to the first of two samples to blend between
178 int16_t *sample_pair = (int16_t *) interp®@->peek[2];
179 interp@->base[0] = sample_pair[0];

180 interp@->base[1] = sample_pair[1];

181 printf("%d\t(%d%% between %d and %d)\n", (int) interp®@->peek[1],
182 100 * (interp@->add_raw[1] & oxff) / oxff,

183 sample_pair[@], sample_pair[1]);

184 interp@->add_raw[@8] = step;

185 }

186 }

This should print:

(8% between @ and 10)

(25% between 0 and 10)

(50% between 0 and 10)

(75% between @ and 10)
0 (8% between 10 and -20)

(25% between 10 and -20)
-5 (50% between 10 and -20)
-13 (75% between 10 and -20)
-20 (0% between -20 and -1000)
-265 (25% between -20 and -1000)
-510 (50% between -20 and -1000)
-755 (75% between -20 and -1000)
-1000 (0% between -1008 and 500)
-625 (25% between -1000 and 500)
-250 (50% between -1000 and 500)
125 (75% between -10008 and 500)

N =2 N a N o

This method is used for fast approximate audio upscaling in the SDK

2.3.1.6.5. Sample Use Case: Simple Affine Texture Mapping

Simple affine texture mapping can be implemented by using fixed point arithmetic for texture coordinates, and stepping
a fixed amount in each coordinate for every pixel in a scanline. The integer part of the texture coordinates are used to
form an address within the texture to lookup a pixel colour.

By using two lanes, all three base values and the CTRL_LANEx_ADD_RAW flag, it is possible to reduce what would be quite an
expensive CPU operati