
Graphics in PicoMite VGA

Introduction
The PicoMite is a standalone computer running MMBasic. The full story can be read in:

https://geoffg.net/picomitevga.html

The base for these computers is the Raspberry Pi Pico, a small module based on the RP2040 chip.

This paper tries to explain how graphics can be used in MMBasic in the PicoMite. Most of this is transparent

between the different flavors of PicoMite, but is essentially based on the PicoMite VGA. Reference is given to

PETSCII ROBOTS game, that uses the presented method.

Graphics layers
To the user, the video screen shows as a 2D object, a flat surface. That is called a layer. To the programmer the video
screen is a piece of memory. That is called a (frame)buffer. These terms are used in the below text, and refer to the
same.

Layer N
The PicoMite starts up using only 1 graphics layer (layer N -or- framebuffer N). In the VGA version this is your visible
screen, when you use an LCD, this is the LCD screen. If you draw a line or print text to the screen, it is on layer N. It is
Important to understand that the difference between the VGA and LCD displays is that the N layer in an LCD is
INSIDE the LCD itself, in its native color depth. For an ILI9341 this is 16 bit color (RGB5:6:5). The VGA version keeps
the information inside the RP2040 chip’s memory, and this is 4 bit resolution (RGB1:2:1).

https://geoffg.net/picomitevga.html

Page 2 PicoMite Graphics

Framebuffer F
If you write to the screen often, it is possible you will see screen artefacts. To avoid these artefacts you can
do all the writing to an intermediate buffer (FRAMEBUFFER F), and when you are ready doing all the graphics
update you can copy the framebuffer F to the N layer (FRAMEBUFFER COPY F,N). Note that framebuffer F is
inside the RP2040 chip and is RGB 1:2:1. If you use an LCD the PicoMite converts RGB1:2:1 to RGB 5:6:5
automatically. Framebuffer F uses 38kbyte of RAM. Framebuffer F is never directly visible. It is just a memory
block that can contain RGB 1:2:1 data.

Layer L / Framebuffer L
Especially for gaming it is nice to have multiple graphics layers. PicoMite offers one layer L on top (overlaying)
the N layer, called Framebuffer L. When you use layer L, it is visually in front of layer N, and can obstruct the
vision to layer N. For that reason, layer L is featured with a “transparent color”. If you paint layer L with that
transparent color, you see the graphics of layer N. If you use any other color, you see the pixels of layer L. The
transparent color is default RGB(BLACK), but can be altered to any of the 16 colors the PicoMite supports.
RGB(Magenta) is often used. FRAMEBUFFER L is physically inside the RP2040 chip, and is 38kbyte in size.
In the VGA version, merging of N and L is automatic. Use of framebuffer F is optional.
In the LCD version (remember, both L and N are in a different chip) merging cannot be done between N and
L. The LCD version does the merging on framebuffers F and L, and then writes the result to the physical
display N.

Framebuffer N is available by default. Other framebuffers can be enabled with :

FRAMEBUFFER LAYER (for L)

FRAMEBUFFER CREATE (for F).

For the PicoMite VGA version the use of framebuffers is only useful in graphics MODE 2 (320x240 16 colors).

Graphical elements
In essence there are 2 different graphical formats that can be used in the PicoMite: Tiles and Sprites.
I am not a graphics designer, this is my name for the formats.

A tile is a rectangular graphical object that is in native color space (i.e. RGB 1:2:1). It can be copied onto any
layer and is directly visible. A tile can be small, or screen size. The PicoMite can load a tile from a storage
device (SD card) with LOAD IMAGE “filename.bmp” and display it on the active layer. As a bonus, LOAD
IMAGE will also convert 24 bit RGB to RGB1:2:1 on the fly. The file must be BMP format.

PicoMite Graphics Page 3

Some tiles from PETSCII robotsP

A Sprite is a rectangular graphical object that consists of color indexes (indices). Each pixel is not represented
by the a RGB value, but by a palette index. This can be very confusing for the PicoMite since it supports 16
colors (RGB 1:2:1) but also happens to support 16 color indexes in the sprite file format.
And these are NOT the same for reason of backward compatibility to CMM1, CMM2. The sprite data in a file
cannot be copied onto the screen directly. It must be converted to RGB values.
Sprite data in a file consists of a header, indicating dimensions of the sprite (i.e. 16x8 pixels) and then a list of
(i.e. 128(16x8)) color indexes.
Sprites are powerful elements, they can restore the background when moved, there is collision detection
when they move. The PicoMite now supports 64 sprites (increased from 31 in the 5.09.00b0 beta release)
Sprites must be loaded into memory with SPRITE LOAD “filename”,sprite_number. After that the sprite
can be displayed with SPRITE WRITE sprite_number,x,y (hard write) or SPRITE SHOW
sprite_number,x,y (remembers background) and SPRITE MOVE.

Some sprites with Magenta background from PETSCII robots.

Memory
The RP2040 has a limited amount of RAM that must be shared between system, video, variables, stack,
buffers (i.e. audio) etc. Therefore provisions exist to also use flash memory for MMBasic programs.

The flash banks can be used to store MMBasic programs, and even execute from them. You can CHAIN
programs. Details are beyond the scope of this document. Just know they exist. MMBasic also supports a
LIBRARY. The exact same flash memory block that is reserved for BANK3 can be used as an extension of the
program memory, with limitations.

Page 4 PicoMite Graphics

The limitation is that you cannot edit the program in the library. You can save CSUB’s, SUB’s and
FUNCTIONS in the library that are “bug free” and use them from the main program. Because the library is
active when the MMBasic program runs, you can only access the library from the command line.
If you have debugged code in your program memory, transfer it to the library with LIBRARY SAVE.
LIBRARY LIST shows what is in the library, and LIBRARY DELETE erases the library and returns the flash
memory to flash bank3.

CSUB
Some of you may remember that in the 80’s there where basic programs with lots of DATA statements at the
end, that no-one knew what they meant, but that were Poked into memory, and then executed (CALL xxx). In
essence that was machine code represented as hexadecimal numbers. A CSUB is exactly that. The CSUB
contains in hexadecimal form machine code instructions for the ARM processor. MMBasic is a bit more
advanced, in that you do not need to remember where to POKE, and what to CALL. Poking is done
automatically when you run the program, and by just using the name of the CSUB, the CALL xxx is executed.

Concluding: at RUN time, any CSUB hexadecimal code is written into memory in binary form, to prepare it for
execution by the ARM. We are using that feature, but do not execute the binary, instead use it for blit.
Similar when you LIBRARY SAVE a program that contains a CSUB, the binary data is written in the library (not
the hexadecimal text representation).

Implement Graphics: preparations
We now have the knowledge to understand the graphics used in advanced games as PETSCII ROBOTS. PETSCII
ROBOTS is (for MMBasic) a large game. The basic program is only 70kbyte, but it uses data (maps, graphics,
sounds) that are over 800kbyte in size.
The game uses over 100 sprites, and roughly 300 tiles. With the limitation of 31 Sprites maximum, when the
game was written, the above knowledge was used to implement the game. Below are game design decisions
that were taken to make the game fit in the PicoMite.

1/ Use only framebuffer L in the VGA version, to save RAM for variable storage (maps/attributes). This has
the disadvantage that you may see minor corruptions in the video while updating the screen. Provisions are

PicoMite Graphics Page 5

made in the program to minimize this by synchronizing heavy screen updates with vertical sync, using
FRAMEBUFFER WAIT.
To make this effective, it is essential to execute all code that writes to video memory close together. Do not
litter the whole code with writing to video memory. PETSCII uses 2 SUBs, executed every game loop. One that
writes everything on the N layer, and a second that writes everything on the L layer. And these SUBs are
tuned for speed.

2/ Store all graphical elements (tiles/sprites) in binary format. MMBasic has highly optimized memory copy
routines from flash memory to video RAM in BLIT MEMORY (-or- SPRITE MEMORY). The BLIT MEMORY
function is fast, but cannot restore backgrounds or detect collisions of sprites.
The detection of collisions is performed in MMBasic on the basis of X and Y coordinates of tiles and sprites.

Restoring of the background can be avoided by using 2 layers. The N layer for the world (world map) built
using tiles. Use the L layer, with magenta as transparent color, to write the sprites. When they move, the N
layer is not affected.

Store Sprites and Tiles in binary format.
When running a CSUB, or saving it to the library, the hexadecimal data is converted to binary form. Matherp
has written a basic program that converts SPRITE files (containing header and color indexes) into
header+hexadecimal RGB 1:2:1 data mimicked as a CSUB.

'program to convert all the sprite files in a directory to a CSUB using

compression where appropriate

Option explicit

Option default none

Const separatesubs% = 0

Dim offset%

Dim fname$=Dir$("*.spr",FILE)

Open "tile0_csub.bas" For output As #2

Open "tile0_index.txt" For output As #3

If separatesubs%=0 Then

Print #2,"CSUB TILE0"

Print #2,"00000000"

offset%=0

EndIf

Do

If fname$<>"" Then code fname$

fname$=Dir$()

Loop Until fname$=""

If separatesubs%=0 Then Print #2,"END CSUB"

Close #2

Close #3

'convert the file f$ to a compressed CSUB

Sub code f$

Local i%,j%,h%,l%,w%,n%,s%,il%

Page 6 PicoMite Graphics

Local a$,o$,oc$

Open f$ For input As #1

Line Input #1,a$ 'process the dimensions and count

w%=Val(Field$(a$,1,","))

n%=Val(Field$(a$,2,","))

h%=Val(Field$(a$,3,","))

If h%=0 Then h%=w%

i%=Instr(f$,".")

o$=Left$(f$,i%-1)

If separatesubs%=1 Then

 Print #2,"CSUB "+o$

 Print #2,"00000000"

 offset%=0

' Else

' Print #2,"'"+o$

EndIf

Local obuff%(w%*h%\8+128),buff%(w%*h%\8+128)

For s%=1 To n% 'process all the sprites in a file

 Print #3,Str$(offset%)

 Print #2,"'Offset ";offset%

 For l%=1 To h%

 a$="'"

 Do While Left$(a$,1)="'" 'skip comments

 Line Input #1,a$

 Loop

 'make sure all lines are the correct length

 If Len(a$)<w% Then Inc a$,Space$(w%-Len(a$))

 If Len(a$)>w% Then a$=Left$(a$,w%)

 LongString append buff%(),a$ 'get all the file into a single longstring

 Next l%

 j%=0

 For i%=1 To LLen(buff%())

 LongString append obuff%(),mycol$(LGetStr$(buff%(),i%,1))

 Next i%

 LongString clear buff%()

 il%=(LLen(obuff%())+7)\8 * 8

 i%=0

 Do While i%<w%*h% 'compress the data

 j%=LGetByte(obuff%(),i%)

 l%=1

 Inc i%

 Do While LGetByte(obuff%(),i%)=j% And l%<15

 Inc l%

 Inc i%

 Loop

 LongString append buff%(), Hex$(l%)+Chr$(j%)

 Loop

 'the output must be a multiple of 8 nibbles

 LongString append buff%(),Left$("00000000",8-(LLen(buff%()) Mod 8))

 If LLen(buff%())<il% Then 'compressed version is smaller so use it

 Print #2,"'"+o$;

 Print #2," is compressed"

 Print #2,Hex$(h%+&H8000,4)+Hex$(w%,4)

 j%=0

 For i%=8 To LLen(buff%()) Step 8 'reverse the order

 o$=LGetStr$(buff%(),i%,1)

 Inc o$,LGetStr$(buff%(),i%-1,1)

 Inc o$,LGetStr$(buff%(),i%-2,1)

 Inc o$,LGetStr$(buff%(),i%-3,1)

PicoMite Graphics Page 7

 Inc o$,LGetStr$(buff%(),i%-4,1)

 Inc o$,LGetStr$(buff%(),i%-5,1)

 Inc o$,LGetStr$(buff%(),i%-6,1)

 Inc o$,LGetStr$(buff%(),i%-7,1)

 Inc j%

 If j%=8 Then

 Print #2,o$

 j%=0

 Else

 Print #2,o$+" ";

 EndIf

 Next i%

 If j%<>0 Then Print #2,""

 Inc offset%,4+LLen(buff%())\2

 Else

 Print #2,"'"+o$;

 Print #2," is uncompressed"

 Print #2,Hex$(h%,4)+Hex$(w%,4)

 LongString append obuff%(),Left$("00000000",8-(LLen(obuff%()) Mod 8))

 j%=0

 For i%=8 To LLen(obuff%()) Step 8 'reverse the order

 o$=LGetStr$(obuff%(),i%,1)

 Inc o$,LGetStr$(obuff%(),i%-1,1)

 Inc o$,LGetStr$(obuff%(),i%-2,1)

 Inc o$,LGetStr$(obuff%(),i%-3,1)

 Inc o$,LGetStr$(obuff%(),i%-4,1)

 Inc o$,LGetStr$(obuff%(),i%-5,1)

 Inc o$,LGetStr$(obuff%(),i%-6,1)

 Inc o$,LGetStr$(obuff%(),i%-7,1)

 Inc j%

 If j%=8 Then

 Print #2,o$

 j%=0

 Else

 Print #2,o$+" ";

 EndIf

 Next i%

 If j%<>0 Then Print #2,""

 Inc offset%,4+LLen(obuff%())\2

 EndIf

 LongString clear obuff%()

 LongString clear buff%()

Next s%

Close #1

If separatesubs%=1 Then Print #2,"END CSUB"

End Sub

'

'converts the Ascii colour from the Maximite standard to PicoMite standard

Function mycol$(c$)

Static cols%(15)=(0,1,6,7,8,9,14,15,2,3,4,5,10,11,12,13)

Local i%

If c$=" " Then c$="0"

i%=Val("&H"+c$)

mycol$=Hex$(cols%(i%))

End Function

.

This program converts all sprites in “filename.spr” to one “xxxx_csub.bas” file and an
“xxxx_index.txt” file that contains all pointers to the elements in the CSUB after conversion to binary

Page 8 PicoMite Graphics

form. The relative positions are referenced to the CSUB start address. The CSUB name (i.e. CSUB TILE0) is
essential for this, since there will be many CSUB’s. Note that it processes the files in the directory in
ascending order. Therefore it is best to number the sprites in their file name, so the order in the CSUB is
predictable.

Then “LOAD xxxx_csub.bas” to load the file in program memory, and “LIBRARY SAVE” to write it as binary
data in flash in the library. Now we have binary RGB 1:2:1 data in flash, at an unknown location.
You can save multiple xxxx_csub.bas files to the library, until the library is full.
To find the absolute address of each CSUB in memory, you retrieve the CSUB start address:

Address% = PEEK(CFUNADDR csub_name) ‘ i.e. PEEK(CFUNADDR TILE0).

It is best to build an array with absolute addresses for the BLIT MEMORY function. The example below
creates an absolute index for the 6 (0…5) sprites in the CSUB called HEALTH.

 'get start addresses
 Local hlt=Peek(cfunaddr HEALTH)

 'build global index file
 Dim health_index(5)

 Open "sprites/hlt_index.txt" For input As #1
 For i=0 To 5
 Input #1,a$
 health_index(i)=hlt+Val(a$)
 Next
 Close #1

Now you can use BLIT MEMORY health_index(3),X,Y to copy the 3rd sprite to (X,Y) on the active layer
set by FRAMEBUFFER WRITE L/N

From LIBRARY to FLASH BANK
Above you are using the LIBRARY for binary data. That requires you to prepare the library manually using the
command line which is not convenient for a game. Remember however that LIBRARY and FLASH BANK3 use
the exact same locations in flash, but work differently.
Programs in the LIBRARY can be part of your active program, and therefore CSUB’s have a meaning in the
main program. FLASH BANK3 is not part of the active program, and therefore the CSUB has no meaning.
But the start address of flash bank 3 (which can change between revisions for MMBasic) can be requested by
flash_address% = MM.INFO(FLASH ADDRESS 3). This is the memory start address for flash bank 3, and it
is also the memory start address for the library.

Instead of using an index based on the CSUB, adapt it to be an index that refers to the start of the flash bank.
Add an offset to each index (the difference between “flash address” and “csub address for that csub”), and
create a new index file that refers to the start address in flash. Do this for all CSUB’s.
Now you have an index file ”flash_index.txt” that references each and every graphical element
(sprite/tile) to the FLASH BANK start address.

Then save the library to SD card as a binary file

PicoMite Graphics Page 9

LIBRARY DISK SAVE “filename.bin”

And keep this library together with the index file. Both are useless without the other.
Now we can clean up the library, and can use the flash space for FLASH BANK 3.

Implement Graphics: The GAME
In the MMBasic game program we can now load the binary in flash bank 1,2 or 3, and all graphical elements
can be found by adding the index to the flash start address of that particular bank you choose to use in the
game. Example:

FLASH DISK LOAD 2, filename.bin,O ‘ loads the binary file in flash bank 2

Flash_address%=MM.INFO(FLASH ADDRESS 2) ‘ gives the start address of bank 2

After that, create an array abs_index%() with absolute indexes adding flash_address% to all relative indexes
read from the index file “flash_index.txt”.
Then simply: BLIT MEMORY abs_index(i),X,Y

Caveats
1/ Documentation
One important thing is to take record of what sprite/tile belongs to what index. For the development of
PETSCII ROBOTS it was useful to keep a graphical record, like this (it shows the tile in relation to its number).

2/ SPRITES
You need all graphical elements as sprite files (indexed colors and dimension header). There may be multiple
ways to realize this, but the way used for PETSCII ROBOTS is by loading a BMP file on the screen, and then
pixel for pixel calculating the color index. Then writing the file back to disk as a sprite file. Essentially, the
following program, written by Martin_H, performs this function. It batch processes 86 sprites in 24x24 size.

Page 10 PicoMite Graphics

'--------------------

'Information of Source here

FN$="spritesMix_bearbeitet.bmp"

W=24

H=24

num=86

'--------------------

'

Dim Col(15):Restore colors:For f%=1 To 15:Read Col(f%):Next f%

cls

load bmp FN$

 x=0

 y=0

For TNR=0 to num-1

 tn$="sprites3\SP3"+hex$(tnr,3)+".SPR"

 open tn$ for output as #1

 print #1,str$(W);",1,";STR$(H)

 for y1=y to y+H-1

 WT$=""

 for x1=x to x+W-1

 C=Pixel(x1,y1):cl=0

 for n= 0 to 15:if C=col(n) then cl=n

 Next

 wt$=wt$+hex$(cl,1)

 Next

 ?#1, wt$

 next

 box x,y,w,h,,rgb (white)

 close #1

inc y,h:if y>383 then y=0:inc x,w

next TNR

colors:

'--Colorscheme accordung to Spritecolors

Data RGB(BLUE),RGB(GREEN),RGB(CYAN),RGB(RED)

Data RGB(MAGENTA),RGB(YELLOW),RGB(WHITE),RGB(MYRTLE)

Data RGB(COBALT) ,RGB(MIDGREEN),RGB(CERULEAN),RGB(RUST)

Data RGB(FUCHSIA),RGB(BROWN),RGB(LILAC)

Programs like this take quite a lot of time per sprite/tile, so this is best run on MMB4W. In case you want to
run it on PicoMite, change “load bmp FN$” to “load image FN$”

3/ MEMORY
MMB4W does not support a LIBRARY, creating the binary must be executed on the PicoMite itself.
To load the xxxx_csub.bas file into memory, and save it to the library, you need program memory for both
the hexadecimal text presentation, and the binary result in RAM. Therefore you can only process 60kbyte size
xxxx_csub.bas files in 100kbyte program space. This is why the tiles and sprites are distributed over several
folders, so xxxx_csub.bas files stay within these requirements.

PicoMite Graphics Page 11

Final words
As the above write-up shows, there is quite a lot of work involved in the preparation, so it is preferable to

start with a well-defined set of graphical elements. It easily takes one whole hour to do this for 400 elements.

But the reward is a fast graphics system. In PETSCII the graphics take up only 30% of the game loop.

If you are new to the procedure, start with a graphics set of few graphical elements, until you master the

process.

